A note on norm attaining functionals

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Norm Attaining Multilinear Forms on L1(μ)

Given an arbitrary measure μ, this study shows that the set of norm attaining multilinear forms is not dense in the space of all continuous multilinear forms on L1 μ . However, we have the density if and only if μ is purely atomic. Furthermore, the study presents an example of a Banach space X in which the set of norm attaining operators from X into X∗ is dense in the space of all bounded linea...

متن کامل

A Note on Linear Functionals

A slight modification of the example given shows that if N is chosen arbitrarily, there exists a limited region* having at least JV distinct points O whose conjugates D lie at infinity.f Theorem III becomes false if in the hypothesis the region R is not assumed limited, for the reader may verify that no point O of the region R has its conjugate at infinity if R is the entire plane slit along th...

متن کامل

A Note on Renormalized Volume Functionals

The asymptotic expansion of the volume of an asymptotically hyperbolic Einstein (AHE) metric defines invariants of the AHE metric and of a metric in the induced conformal class at infinity. These have been of recent interest, motivated in part by the AdS/CFT correspondence in physics. In this paper we derive some new properties of these invariants. Let (X, g+) be AHE with smooth conformal infin...

متن کامل

Norm aúaining and numerical radius attaining operators

ABSTRAer. In Ihis note we discusa sorne results oit numerical radius altaining operators paralleling carlier results Oit norm attaining operatora. Eorarbitrary Banach spacesXand Y, the set of (bounded, linear) operatora from Xto Ywhose adjoints altain [heir norms is norm-dense ita [hespaee of ah operators. This theorem. due toW. Zizíer, improves an earlier result by J. Lindenstrauss on the dens...

متن کامل

Denseness for norm attaining operator-valued functions

In this note we offer a short, constructive proof for Hilbert spaces of Lindenstrauss’ famous result on the denseness of norm attaining operators. Specifically, we show given any A ∈ L(H) there is a sequence of rank-1 operators Kn such that A+Kn is norm attaining for each n and Kn converges in norm to zero. We then apply our construction to establish denseness results for norm attaining operato...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the American Mathematical Society

سال: 1998

ISSN: 0002-9939,1088-6826

DOI: 10.1090/s0002-9939-98-04739-x